
44 The Delphi Magazine Issue 47

Working With The InterBase API
by Paul Reeves

Writing applications in Delphi
that directly use the

InterBase API has never been
straightforward. The API guide was
written for C programmers, and all
the example code fragments use
the procedural programming style.
Quite apart from the obvious
hurdle of translating C into Pascal
is the problem of pulling the
disparate examples together into
some kind of cohesive framework
that could be called a working
program.

This article has three aims. First,
to give users of the new InterBase
Express Components (hereafter
IBX) a better appreciation of what
is happening under the InterBase
hood. Secondly, there are times
when programming to the API
directly can yield performance
benefits: the simple examples sup-
plied should give you enough to
experiment with the ‘hot spots’ in
your applications and improve on
them. Thirdly, with InterBase
being a multi-platform database,
the examples have been designed
to be portable to run under other
flavours of Object Pascal.
InterBase API level programming is
ideal for non-interactive server-
side applications and there is no
reason to have to abandon Pascal
just because the platform is no
longer Windows.

Getting Started
There are typically four main com-
ponents in what one might loosely
term an InterBase application. The
client application links with
gds32.dll (one), which talks over a
network connection (two) to the
InterBase Server (three), which
provides access to the database
file (four).

The gds32.dll library represents
the totality of that which we can
achieve with InterBase. The only
way we can talk to our database is
through loading a copy of this DLL
into our application’s memory
space and making calls to the func-
tions it exports.

The first step in talking to
InterBase is to get a translation of
the IBASE.H file. This C header file
has three roles: it defines essential
data structures, it contains the
function prototypes exported from
gds32.dll, and it declares hundreds
of constants for use with those
function calls.

In general, I would recommend
using the official ibase.pas inter-
face shipped with the IBX set, as
this will always be updated to
reflect changes in InterBase. How-
ever, the versions that come with
FreeIBComponents or IBObjects
are just as good to get started with.
As there are now so many transla-
tions available I am not going to

dwell on the effort involved in con-
verting ibase.h to ibase.pas.

Making A Connection
Before doing anything with our
database we must connect to it.
This is a relatively simple affair,
requiring a call to isc_attach_
database, see Listing 1.

We need to declare a few vari-
ables and then put some values
into them.

The DBHandle must be assigned
NILbefore we do anything with it. If
this handle is global it is good
practice to check it’s not already in
use.

When assigning the value to the
DBName we must include the name
of the server, the connection pro-
tocol symbol, the path local to the
server and the database filename
itself. Typically, using TCP/IP the
value in DBName might be:

DBName :=

‘myserver:c:\data\employee.gdb’;

with the first : signifying the proto-
col. If we were connecting using
NETBEUI we would use:

DBName :=

‘\\myserver\c:\data\employee.gdb’;

Equally, if you are making a local
connection then just leave out the
server name and protocol
symbols.

The next step is to populate the
DPB. The general principles for
working with parameter blocks are
explained in a sidebar. Essentially
the DPB contains a list of all the
parameters that will define this
attachment to the database. The
API guide lists the most important
ones. At the very least, we will
need to supply a username and
password. In the example code I
have also shown how to reset the
cache size for the database.

We are now ready to make our
connection. Listing 2 takes us
through the basic process.

function isc_attach_database(status_vector: PSTATUS_VECTOR;
db_name_length: Short; db_name: PChar; db_handle: pisc_db_handle;
parm_buffer_length: Short; parm_buffer: PChar): ISC_STATUS; stdcall

type
TParamBlock: array of char[0..1023];

var
StatusVector: ISC_STATUS_VECTOR;
DBName: String;
DBHandle: Tisc_db_handle;
DPBLen: SmallInt;
DPB: TParamBlock;

procedure attachdatabase;
begin
DBName:='c:\data\employee.gdb';
DBHandle:=Nil;
{Set DPBLen and DPB here }
if isc_attach_database(@StatusVector, length(DBName), PChar(DBName), @DBHandle,
DPBLen, @DPB)<> 0 then
//DoErrorHandlingStuff

else
//continue processing

end;

➤ Above: Listing 1 ➤ Below: Listing 2

July 1999 The Delphi Magazine 45

Note that we use the @ symbol as
a prefix to each variable that is to
be passed as a pointer.

If this call executes successfully
DBHandle will now represent our
connection to the database. From
here on, almost every API call will
require this handle as a parameter.

Starting A Transaction
No data can be written to, or read
from, an InterBase database out-
side of transaction control. Before
we can start a transaction we must
establish a valid transaction
handle. This process is very
similar to that of establishing a
database handle:

function isc_start_multiple(

status_vector: PSTATUS_VECTOR;

trans_handle: pisc_tr_handle;

db_handle_count: Short;

teb_vector_address: PISC_TEB):

ISC_STATUS; stdcall;

Where a database connection
requires us to supply a DPB, a
transaction requires us to supply a
transaction existence block (TEB).
This itself is an array of transaction
parameter blocks (TPB). Why so
complicated? Well, the API does
have an isc_start_transaction
call, which just takes TPBs, but it
takes a variable number of parame-
ters, which most experts I have
read seem to think a bad thing for
Pascal. So we have the alternative
call using a TEB. The TEB is used so
that a transaction can be set up
spanning multiple databases. For
now, though, we will just concen-
trate on working with one.

And working with a single data-
base means that we can get away
with an empty TEB. By default, if no
TPB is set up, InterBase uses

default transaction settings. These
are an isolation of repeatable read,
an access mode of read/write, and
a lock resolution mode of wait. This
is suitable for just about all our
work and, indeed, shouldn’t be
changed unless you really know
what you are doing.

So, the steps to get our transac-
tion handle go roughly along the
lines of Listing 3. We need to
declare our variables and initialise
our TEB to nil. If the call to
isc_start_multiple is successful
then we have our transaction
handle. That’s it. We have a con-
nection to the database and we
have started a transaction.

The Meaty Stuff
Let’s move on to getting some data
in and out of the database. Over-
coming the simple problems of
acquiring database and transac-
tion handles should not lull you
into thinking IB API programming
is easy, even if correctly populat-
ing parameter blocks is a bit tricky.
Unfortunately, the real challenges
still await us.

Doing anything at all useful with
a database requires us to send

Dynamic SQL (DSQL) statements
to the database. We might option-
ally want these statements to be
parameterised, and they may
return data back to us (result sets).
In addition, we might be using
stored procedures.

All of these require slightly
different combinations of calls,
although we can put most of it
together into a series of generic
routines that can be called
whatever the query type.

There are a number of steps
involved in DSQL programming.
Table 1 gives us an overview.
There is a lot to take in, with many
pitfalls along the way.

Preparing An SQL Statement
There are several steps to follow in
‘preparing’ a statement for execu-
tion. I am going to present them in
a generic manner. You may be able
to leave some steps out, depend-
ing on the type of statement.

Although they will be reset later,
it is good practice to initialise our
InputDataArea and OutputDataArea.
See the sidebar for a fuller explana-
tion of these structures. Between
them, they will handle param-
eterised inputs and the subse-
quent retrieval of data for Select
statements. To start with, we will
set them to contain a single
column and we will zero the
memory allocated to them: see
Listing 4.

There is one important point to
bear in mind here. The API guide

var
StatusVector : ISC_STATUS_VECTOR;
TxnHandle: Tisc_tr_handle;
TEB: ISC_TEB;

procedure StartTransaction;
begin
//init TEB
with TEB do begin
db_ptr := @DBhandle; //previously declared
tpb_len := 0;
tpb_ptr := nil;

end;
TxnHandle:=Nil;
isc_start_multiple(@StatusVector, @TxnHandle, 1, @TEB);

end;

➤ Listing 3

Preparation
Initialise our data structures for holding query parameters and results.
Allocate a statement handle.
Prepare the statement.
Describe number of parameters.
Allocating sufficient memory for parameters.
Discover details of result set (Extract the metadata).
Allocate sufficient memory to hold a single row.

Execution
Determine query type.
Assign parameters for this execution.
Choose execution method and do it!

Reading Results
According to query type repeatedly fetch values into the Output DataArea.
Process output placing data into persistent storage for further use.

➤ Table 1

46 The Delphi Magazine Issue 47

uses malloc() for memory alloca-
tion. ReallocMem is not quite a func-
tional equivalent of this. It took me
a long, painful debug session to dis-
cover that malloc() zeroes
memory automatically (in fact, it
was only when I carefully examined
the code for FreeIBComponents that I
fully realised this). You have to
explicitly do this in Pascal, other-
wise your queries will fail for no
apparent reason.

We now need to initialise a state-
ment handle. To do this we need to
declare one:

var
StmtHandle: Tisc_stmt_handle;

and then make this call:

isc_dsql_allocate_statement(
@StatusVector,@DBHandle,
@StmtHandle);

With a valid statement handle we
can quickly move on to preparing
the SQL statement. To do this we
can take an SQL statement and cast
it to a PChar within the call itself:

isc_dsql_prepare(@StatusVector,
@TxnHandle,@StmtHandle,0,
PChar(SQLString),1,
OutputDataArea);

By default we will pass our
OutputDataArea. If you know that
your statement will not return a
result you could pass NIL here.

We can ignore the constant
values supplied to the prepare
function: they never change under
InterBase v4 or v5. However, you
should always check this when a
new version is released.

We now need to find out the
number of parameters the SQL
statement requires. In InterBase,
parameters are indicated by the ?
token. So a statement such as

Select * from employee where
emp_no = ?;

will require a single parameter.
Note that parameters are not
named and are assigned values in
their order of declaration. After
calling isc_dsql_describe_bind,
passing it the InputDataArea, we
will find the sqld field is set with the
number of parameters in the
statement. We need to then
re-initialise the space for the
parameters and repeat the
describe_bind call. Finally, we need
to allocate storage for the
parameters themselves. Listing 5
takes us through these steps.

AllocateSQLData is a routine I
have written which handles the
tricky stuff here. We need to walk
through the XSQLDA checking each
data type and allocating memory
for it, storing the pointer for that
memory in the SQLData field of each
XSQLVAR.

The above sequence is all per-
fectly safe, even if there are no
parameters. InterBase will set the
InputDataArea accordingly. Unless
performance really is an issue (per-
haps due to a slow network, or
when using a dial-up line) it is
worth going through this sequence
anyway, as we can test the
InputDataArea later to see which
method of execution is required.

Discovering The Result Set
Having worked out our input
requirements we can turn to our

result set. When we called
isc_dsql_prepare we passed the
OutputDataArea. We can now exam-
ine the sqld field to see how many
columns will be returned.

We then need to resize the data
area to hold these columns and
call isc_dsql_describe to fill the
OutputDataArea with all the infor-
mation InterBase has on the result
set. We finish up by allocating
memory for each column. And that
is it. We have successfully pre-
pared our statement for execution.
See Listing 6 for the details.

Assigning Parameters
If we have a parameterised query
we now need to supply a value to
each parameter. This is another
hurdle for the typical Delphi pro-
grammer who, like me, missed out
on the pre-Delphi era of Pascal.
Parameter assignment is filled
with lots of pointer fun. I have
simplified it greatly with an
AssignParam function in the
example application.

Essentially we need to set up a
FOR statement that goes through
each XSQLVAR. Then, in our
AssignParams routine, we test for
the data type. Our parameter
values will typically be strings so
we need to cast them to the appro-
priate type and then place them in
the memory area that is pointed to
by the SQLData field. Simple! Listing
7 shows a snippet, for two data
types.

The example code covers most
of the important data types and
should give you enough to manage

procedure InitSQLDA(var AXSQLDA: PXSQLDA; Columns: Integer);
begin
ReallocMem(AXSQLDA, XSQLDA_LENGTH(Columns));
FillChar(AXSQLDA^, XSQLDA_LENGTH(Columns), #0);
AXSQLDA^.SQLn := Columns;
AXSQLDA^.version:=SQLDA_VERSION1;

end;
...
InitSQLDA(InputDataArea,1);
InitSQLDA(OutputDataArea,1);

//call describe_bind to find out the number of params
isc_dsql_describe_bind(@StatusVector,@StmtHandle,1,InputDataArea);
//read the number of params in the statement
i:=InPutDataArea^.sqld;
//now reinitialise space for that many params
InitSQLDA(InPutDataArea,i);
//now repeat bind call to fill the InputDataArea with meta data from InterBase
isc_dsql_describe_bind(@StatusVector,@StmtHandle,1,InputDataArea);
//allocate memory for the params
AllocateSQLData(InPutDataArea);

➤ Above: Listing 4 ➤ Below: Listing 5

i:=OutPutDataArea^.sqld;
InitSQLDA(OutPutDataArea,i);
isc_dsql_describe(@StatusVector,@StmtHandle,1,OutPutDataArea);
AllocateSQLData(OutPutDataArea);

➤ Listing 6

48 The Delphi Magazine Issue 47

the rest. I must confess that I have
only coded for the ones I have
needed, and am thankful for that.

Executing A Statement
We are now ready to actually
execute the statement. To do so,
we must test for the type of execu-
tion required and act accordingly.
For this I have created two enu-
merated types and two functions
to help us determine our course of
action:

function GetDsqlExecType :
TDsqlExecType;

function GetStatementType(
StatementHandle:
pisc_stmt_handle):
TStatementType;

With these we can put together a
case statement that tests for each
ExecType and then, depending on
whether the statement type is an
stExecProcedure or not, make the
appropriate execute call.

Why so complicated? Well, actu-
ally, it is and it isn’t. InterBase has
two execution calls, isc_dsql_exe-
cute and isc_dsql_execute2. The
former can be passed an Input
DataArea or nil, and the latter can
be passed both an Input and an
Output data area. So, this is why
we have to test for execution type,
ie, do we have parameters? and do
we get a result set?

Then, stored procedures need
to be treated slightly differently so
we need to check the statement
type. In the sample code you will
see in fact that this does reduce to
only four variations, but the case
statement makes the code more
readable by covering each possi-
ble combination. It also allows for
easy expansion for other state-
ment types. Although not covered
in this article or the example
application, it is possible to
execute any valid DSQL statement,
including COMMIT and ROLLBACK as
well as DDL commands etc.

Reading Results
We are almost there. In fact, we
only have one major hurdle left:
reading the result set, if there is
one. Again, coding can be fairly
generic, as we read until we get

IB API Programming Conventions:
Parameter Blocks And Result Buffers
One difficulty most Delphi programmers will face is the use of arrays of chars
to pass information to and from InterBase. These arrays typically hold data in
the following format:

isc_constant 1 byte
Length of data to follow 2 bytes
Data to pass in or out n bytes

It is usually easiest to hard code the memory for these arrays, otherwise
memory needs to be allocated and de-allocated on the fly. The space
requirements are easy enough to predict, being specific to each function call
that uses them.

Let’s take the Database Parameter Block (DPB) as an example of how to
work with them. First we need to declare our DPB and some other variables:

type
TParamBlock = array [0..KILOBYTE-1] of Char; //array of 1024 chars

var
FDPB: TParamBlock; //parameter block for database connection
FDPBLen: Integer; //number of bytes set in block
UserStr: String; //UserName
Len: Integer //Length of username

and initialise it for use:

//init DPB
fillchar(FDPB,sizeof(FDPB),#0);
FDPB[0] := char(isc_dpb_version1);
inc(FDPBLen);

Now, we need to add the parameters; the most common are a username and
password, which are both strings:

FDPB[FDPBLen]:=isc_dpb_user_name; //assign DPB constant
inc(FDPBLen); //move length on by 1 char
len:=char(Length(UserStr)); //get length of username
FDPB[FDPBLen]:=len; //write length of user name
inc(FDPBLen); //move length on again
StrPCopy(@PB[PBLen],UserStr); //pop the user name in
inc(FDPBLen,Len); //and move the length on again

This code sequence needs to be repeated for each parameter passed. Fortu-
nately, it can be simplified greatly. Parameters can only be of three types:
String, Integer or Boolean. So we could write something like this to
manage all string parameters:

//Add a string value to a parameter block
procedure Tfrs_GDS.BuildPBString(var PB: array of char; var PBLen: Integer;
item: byte; contents: string);

var
len: Integer;

begin
{PBLen is the current size of the populated array,
as well as the position indicator}
PB[PBLen] := char(item);
inc(PBLen);
len:=Length(Contents);
PB[PBLen] := char(len);
inc(PBLen);
StrPCopy(@PB[PBLen],Contents);
inc(PBLen,len);

end;

Then all we have to do is call it like this:

BuildDPBString(FDPB,FDPBLen,isc_dpb_user_name,’SYSDBA’);
BuildDPBString(FDPB,FDPBLen,isc_dpb_passsword,’masterkey’);

The example contains similar code to manage Integer and Boolean con-
stants. With these functions we need never worry again about the details of
creating parameter blocks.

July 1999 The Delphi Magazine 49

case DataType of
SQL_Short : begin

len:=sqlvar[Position].sqllen;
PSmallInt(sqlvar[Position].SQlData)^:=StrToInt(AParam);

end;
SQL_Long : begin

len:=sqlvar[Position].sqllen;
PInteger(sqlvar[Position].SQlData)^:=StrToInt(AParam);

end;

FetchCode=0;
repeat
FetchCode:=isc_dsql_fetch(@StatusVector, @StmtHandle, 1, OutputDataArea);
ProcessEachColumn;

until (FetchCode=100) or (FetchCode<>0);

➤ Above: Listing 7 ➤ Below: Listing 8

an Error (not 0) or a No More Rows
signal (100) . If there are none to
start with then we will get this
latter value straight away.

If we are displaying the results
on a console, or writing them out to
a file, the first step will be to get the
column titles. This information is
all stored in the OutputDataArea. In
the sample code I have supplied a
short routine that returns the titles
as a concatenated string. It just
walks through the data area grab-
bing each sqlvar[n].Aliasname and
padding it to the size of the length
of the data type or the length of the
alias name (whichever is greater).
A further refinement might be to
check that the width is sufficient
for storing large numbers as
strings.

We then need to read each row.
Listing 8 outlines the basic process.
It looks quite simple, but in practice
it isn’t. It’s the ProcessEachColumnbit
that is easy to write in the code
snippet and a lot more difficult to
write in reality.

We have to ask what we want to
do with the results. In the example,
I am just writing them to the screen
and discarding them. Perhaps they
all need to be stored in a result
buffer, for later manipulation on
the client side.

Let’s look at some of these
issues. When we call isc_dsql_
fetch InterBase populates the
OutputDataArea with a row of data.
We usually need to get it out of this
temporary storage area and place
it somewhere more persistent.

To do this we need to decide
how and where to store the data.
This is very application specific, in
the example I just needed to get
each row into a string and then
write it to the console. Even this
presents some challenges. Here is
a code snippet, from immediately
after a successful fetch:

if Fetchcode = 0 then
with OutputDataArea^ do
for i:=0 to sqln-1 do begin
ReadColumn(s,i);
if result=’’ then
Result:=s

else
Result:=Result+’ ‘+s;

end;

The result is then returned to the
calling procedure, which does a
writeln. The really tricky stuff is
done in the ReadColumn procedure:

Procedure ReadColumn(
var AColumn:
String; ColNo: Integer);

This procedure is quite similar to
the AssignParams procedure that
we looked at earlier. In fact it is the
inverse. We pass it a var string and
a column number and it then
checks the data type and converts
the contents of the SQLData field to
a string. Listing 9 shows a section
of the code.

Let’s go through what is happen-
ing here. We get the data type and
test it against each possible type
which we are interested in. Each
data type requires specific pro-
cessing. For instance, if the value is
an SQL_SHORT it may be stored with
0 scale, in which case we can pro-
cess it as is, casting the SQLData to a
PSmallInt, which we then cast to a
String. In another situation we may
have to adjust the scale and then
do the casting.

A similar process is carried out
for SQL_TEXT, except that here we
don’t need to worry about scale,
but we do need to discover the

with OutputDataArea^ do begin
datatype:= sqlvar[ColNo].sqltype and (not SQL_NULL);
case DataType of
SQL_SHORT : if sqlvar[ColNo].sqlscale=0 then

AColumn:=IntToStr(PSmallInt(sqlvar[ColNo].SQLData)^)
else
AColumn:=FormatFloat('#,##0.00##', AdjustScale(PSmallInt(
sqlvar[ColNo].SQLData)^, sqlvar[ColNo].sqlscale));

SQL_TEXT : begin
sqllen:=sqlvar[ColNo].Sqllen;
s:=pchar(sqlvar[ColNo].SQlData);
s:=Copy(S,1,Sqllen);
AColumn:=s;
end;

end;
end;

➤ Listing 9

length of the text and copy that out
to our local storage.

If you have managed to stay with
me this far, you are just about
there. The ground we have cov-
ered now takes up about 75 pages
in the manual! Getting to grips with
all this stuff really is a slog, but
maybe now you’ll never complain
again about how complex the
Borland Database Engine is to
access directly...

Cleaning Up
Of course, having successfully
connected to the database, started
a transaction and queried some
data, it is important to clean up our
resources properly.

First of all, don’t ever forget to
commit your transaction, even if
you haven’t made any changes.
This is important, as InterBase will
automatically rollback any uncom-
mitted transactions when the data-
base is disconnected. A side effect
of this is that garbage collection is
delayed and back record versions
are maintained, ultimately slowing
the database down. In any case,
committing is easy. We really
should free our statement handle if
we have one and clearing the data

50 The Delphi Magazine Issue 47

Error Detection And Handling
Throughout this article the code snippets have not been
tested for an error, so as to keep the focus clearly on each
call. In practice we can’t get away with that. Nearly every
call must be tested for failure, a non-zero value indicates an
error. Additionally, the first parameter of each call is a
pointer to a status vector. This is an array of 20 integers.
When a call fails this status vector must be examined. The
error constants within can be expanded to meaningful
error messages. There are three ways to test for errors and
two techniques to examine them.

The traditional C style approach is to test every call with
an if..then..else statement.

if isc_attach_database(....)<>0 then
//handle error

else
//continue execution

In IBX and FIB the approach has been to call every API func-
tion as a parameter to a CALL method which then tests the
result for an error.

call(isc_attach_database(.....), RaiseError);

Call essentially does something similar to the first example,
raising an Exception if the ISC_STATUS result is not zero and

the RaiseError variable is set to True. In the example
code I have demonstrated using a property to achieve
the same result:

with frs_gds do
errorcode:=isc_attach_database();

The errorcode property has a SetErrorCode method
which deals with all the problems.

Both the latter two examples greatly simplify the
task of error detection, leaving cleaner, more readable
code.

When we do get an error we need to find out what it
is. For this we have an API call that, given an error code,
will look it up in the interbase.msg file and return
an error string. We have to repeatedly call
isc_interprete, passing the Statusvector and an
output buffer, until all the errors are translated. The
HandleIBErrors method of the Tfrs_GDS class demon-
strates how to do this.

You also have the option of using isc_sql_
interprete to convert errors to SQL error strings where
the error arises during DSQL programming. This seems
like an unnecessary complication to me, my adherence
to ANSI SQL 92 only goes so far and I find the actual
InterBase errors more informative.

areas is not a bad idea, either. If we
are packing up for the day then it is
also good manners to detach from
the database properly. Listing 10
has the code.

This cleanup code is especially
important if you wish to reuse any
resources within the same applica-
tion. Stale pointers are always a
problem, but never more so when
programming at this level.

Putting It All Together
Just how do we use this stuff in the
real world? Well, if you are creating
user interfaces with lots of tables
and lots of edit controls then carry
on using your existing VCL compo-
nents. The performance gains this
type of coding will bring just aren’t

worth the development time. If,
however, you are doing non-visual
programming, then this level of
control may be right for you.

The example application demon-
strates a variety of techniques,
from attaching to a database, to
getting information from it, to que-
rying tables. To simplify the task I
have descended a simple class
from TObject to encapsulate both
the API calls and some of the basic
functions of database access.

This simple class solves many of
our problems. It has standard vari-
ables such as database and trans-
action handles that are declared
automatically for us. A handle to
gds32.DLL is established and the
main API calls are loaded. The ones
we don’t need are never loaded
(thanks to Jason Wharton for this

if assigned(TxnHandle) then begin
errorcode:=isc_commit_transaction(@StatusVector, @TXnHandle);
TxnHandle:=Nil;

end;
if assigned(StmtHandle) then begin
isc_dsql_free_statement(@StatusVector, @StmtHandle, DSQL_Drop);
StmtHandle:=Nil;

end;
FreeSQLData(OutputDataArea);
if assigned(DBHandle) then
if assigned(TxnHandle) then
raise Exception.create(
'Transaction active. Cannot close database connection.')

else begin
ErrorCode := isc_detach_database(@StatusVector, @DbHandle);
DBHandle:=Nil;

end;

➤ Listing 10

tip). Data structures are initialised
automatically. Memory manage-
ment is simplified. Properties can
be used to detect and deal with
errors while handles and other
objects can be initialised and
cleaned up easily.

In short, all the core functional-
ity we need can be made available
to us in a single class. This mono-
lithic class is fine for small pro-
jects, however, it does suffer from
some limitations. It can only work
with a single database and a single
transaction. All the DSQL program-
ming is outside of it, and should be
in a class of its own.

From a purist point of view it
would make sense to create sev-
eral classes, for database connec-
tions, transactions and queries.
Each should be derived from a
base class that knows about
InterBase and can test for errors.
Unfortunately, this route adds a
layer of complexity.

Each database object, say,
needs to maintain pointers to the
transactions and data sets that are
using it, so that an attempt to dis-
connect the database will grace-
fully clean these objects up or
raise an exception. Once our
requirements get to this stage it is

52 The Delphi Magazine Issue 47

reasonable to ask whether using
the lightweight objects in one of
the existing IB API component sets
wouldn’t be a lot easier (if not a
little less portable).

So, the example application
keeps things simple and portable
across platforms. By using the
base class the programming tasks
remain fairly simple. Indeed, I was
surprised at how simple the
coding was and how quickly the
work went, once I had my frame-
work in place. I would recommend
anyone doing serious InterBase
development to have a go at this
level and play with the examples. It
gets quite easy, once you get the
hang of it.

Conclusion
In this article I have tried to sum-
marise the basic steps involved for
Delphi developers to work with
InterBase at the API level. This is
not a substitute for reading the API
guide, however, which extensively
documents almost every detail of
API programming.

There are quite a few details left
out. Most, thankfully, are covered
in the API guide. No attention has
been paid to blobs or arrays, each
of which would require articles to
themselves.

Take this article in the spirit it is
intended: a leg-up on writing to the
API in Pascal and the low-down on
Pascal specific issues that are not
covered in it. Hopefully, the
gotchas that I encountered won’t
now get you.

Paul Reeves is the principal of
Fleet River Software, a UK based
software house dedicated to
InterBase and Delphi develop-
ment. He can be contacted at
paul@fleetriver.demon.co.uk
Copyright © 1999 Paul Reeves
All rights reserved.

EXtended SQL Descriptor Areas (XSQLDA)
The heart of Dynamic SQL (DSQL) programming is contained in XSQLDAs and
their associated XSQLVARs (eXtended SQL variable). This combo might simply
be described as a row of data, although they play a far more complex role
than that. An XSQLDA is a contiguous area of memory with the following
structure:

XSQLDA = record
version : Smallint { version of this XSQLDA }
sqldaid : array [0..7] of Char; { XSQLDA name field, not used in v4 or v5. }
sqldabc : isc_long; { length in bytes of SQLDA, not used inv4 or v5 }
sqln : Smallint; { number of fields allocated }
sqld : Smallint; { actual number of fields }
sqlvar : array [0..0] of XSQLVAR; { first field address }

end;
PXSQLDA = ^XSQLDA;

sqlvar is a pointer to an array of XSLQVARs. The size of this array is specified by
sqln.

XSQLVAR = record
sqltype: Smallint; { datatype of field }
sqlscale: Smallint; { scale factor }
sqlsubtype: Smallint; { datatype subtype, BLObs & Text types only }
sqllen: Smallint; { length of data area }
sqldata: Pointer; { address of data }
sqlind: ^Smallint; { address of indicator variable }
sqlname_length: Smallint; { length of sqlname field }
{ name of field, name length +space for NULL }
sqlname: array [0..31] of Char;
relname_length: Smallint; { length of relation name }
{ field's relation name + space for NULL }
relname: array [0..31] of Char;
ownname_length: Smallint; { length of owner name }
{ relation's owner name + space for NULL }
ownname: array [0..31] of Char;
aliasname_length: Smallint; { length of alias name }
{ relation's alias name + space for NULL }
aliasname: array [0..31] of Char;

end;
PXSQLVAR = ^XSQLVAR;

The XSQLVAR holds a great deal of information for each column, even a
smallint requiring just two bytes of storage will initially require an XSQLVARof
some 150 bytes to be passed across the network, in addition to the data itself.
However, the information is consistent for all datatypes and enables us to
write generic routines that can manipulate it.

XSQLDAs and their associated array of XSQLVARs are used both to assign
values for parameterized queries and to read data back from a select. The
former is typically called an input data area and the latter an output data
area, but the structure is the same. The sqln property indicates either the
number of parameters to be supplied or the number of columns in the result
set. An output data area essentially represents a row of data in a result set
and each element in the array of XSQLVARs is a column. Given the declaration:

var
i: integer;
NumCols: integer;
Value: PChar;
OutputDataArea: PXSQLDA

we would read the number of columns thus:

NumCols:=OutputDataArea^.sqln;

And to get a pointer to the value stored in each particular column we could
do:

for i:=0 to NumCols do
Value:= OutputDataArea^.sqlvar[i].SQlData;

In practice things are a lot more complicated. We need to test for null values,
check the data type and allocate persistent storage. Depending on the data
type we then need to choose how we read the data out.

The section on working with DSQL goes into much greater detail on these
issues.

	Getting Started
	Making A Connection
	Starting A Transaction
	The Meaty Stuff
	Preparing An SQL Statement
	Discovering The Result Set
	Assigning Parameters
	IB API Programming Conventions: Parameter Blocks And Result Buffers
	Executing A Statement
	Reading Results
	Cleaning Up
	Putting It All Together
	Error Detection And Handling
	EXtended SQL Descriptor Areas (XSQLDA)
	Conclusion

